Selasa, 31 Mei 2011

Dampak Ozon (O3) Terhadap Kesehatan


Ozon telah menjadi suatu issu aktual karena kaitannya dengan satu efek global pencemaran udara yaitu penipisan lapisan Ozon di atmosfer atas bumi kita. Ozon merupakan salah atu pencemar udara yang terus meningkat konsentrasinya.
Dampak ozon terhadap kesehatan manusia yaitu :

Dengan konsentrasi 0,3 ppm selama 8 jam akan menyebabkan iritasi pada mata.
0,3 – 1 ppm selama 3 menit s.d. 2 jam akan memberikan reaksi seperti tercekik, batuk, kelesuan.
1,5 – 2 ppm selama 2 jam akan mengakibatkan sakit dada batuk-batuk, sakit kepala, kehilangan koordinasi serta sulit ekspresi dan gerak.

Ozon pada konsentrasi 0,3 ppm dapat berakibat iritasi terhadap hidung dan tenggorokan. Kontak dengan ozon pada konsentrasi 1,0 – 3,0 ppm selama 2 jam mengakibatkan pusing berat dan kehilanan koordinasi pada beberapa orang yang snsitif. Sedangkan kontak dengan konsentrasi 9,0 ppm selama beberapa waktu dapat mengakibatkan endema pulmonari pada kebanyakan orang.

Kombinasi ozon dengan SO2 sangat berbahaya karena akan menyebabkan menurunnya fungsi ventilasi apabila terpajan dalam jumlah yang besar. Kerusakan fungsi ventilasi dapat kembali baik mendekati fungsi paru-paru normal pada orang yang terpajan dalam tingkat rendah.

Sumber :
Fardiaz, Polusi Air dan Udara, 1992
Soedomo, Pencemaran Udara, 2000

Minggu, 29 Mei 2011

Aspek Klimatologi Pencemaran Udara

Pencemaran udara berbeda pada satu tempat dengan tempat lain karena adanya perbedaan kondisi pencahayaan, kelembaban, temperatur, angin serta hujan yang akan membawa pengaruh besar dalam penyebaran dan difusi pencemar udara yang diemisikan baik dalam skala lokal (kota tersebut) atau skala regional (kota dan sekitarnya).

1. Kelembaban

Kelembaban udara menyatakan banyaknya uap air dalam udara. Kandungan uap air ini penting karena uap air mempunyai sifat menyerap radiasi bumi yang akan menentukan cepatnya kehilangan panas dari bumi sehingga dengan sendirinya juga ikut mengatur suhu udara.
Fog (kabut) terbentuk ketika udara lembab dan mengembun, jenis partikel cair ini merugikan karena memudahkan perubahan SO3 menajdi H2SO4. Selain itu fog yang terjadai di daerah lembab akan menghalangi matahari memanasi permukaan bumi untuk memcah inversi, akibatnya sering memperpanjang waktu kejadian pencemaran udara.
Kelembaban udara yang relatif rendah (< 60%) di daerah tercemar SO2 akan mengurangi efek korosif dari bahan kimia tersebut sedangkan pada kelembaban relative lebih atau sama dengan 80% di daerah tercemar SO2 akan terjadi peningkatan efek korosif SO2 tersebut.
Kondisi udara yang lembab akan membantu proses pengendapan bahan pencemar, sebab dengan keadaan udara yang lembab maka beberapa bahan pencemar berbentuk partikel (misalnya debu) akan berikatan dengan air yang ada dalam udara dan membentuk partikel yang berukuran lebih besar sehingga mudah mengendap ke permukaan bumi oleh gaya tarik bumi.

2. Suhu


Salah satu karaktersitik atmosfir yang penting adalah kestabilan atmosfir itu sendiri yaitu kecenderungan untuk memperbanyak atau menahan pergerakan udara vertikal. Pada kondisi stabil pergerakkan udara ditahan atau tidak banyak terjadi pergerakkan vertikal. Kondisi ini dipengaruhi oleh distribusi suhu udara secara vertikal.
Suhu udara menurun ± 1 °C per kenaikan ketinggian 100 meter, namun pada malam hari lapisan udara yang dekat dengan permukaan bumi mengalami pendinginan terlebih dahulu sehingga suhu pada lapisan udara di lapisan bawah dapat lebih rendah daripada atasnya. Kondisi metereologi itu disebut inversi yaitu suhu udara meningkat menurut ketinggian lapisan udara, yang memerlukan pada kondisi stabil dan tekanan tinggi. Gradien tekanan pada kondisi tersebut menjadi lemah sehingga angin menjadi lambat yang menyebabkan penurunan penyebaran zat pencemar secara horisontal. Sementara itu tidak terjadi perpindahan udara vertikal yang menyebabkan penurunan zat pencemar secara vertikal dan meningkatkan akumulasi lokal. Hal ini dapat berakibat buruk bagi kesehatan manusia. Namun inversi dapat menghilang setelah pagi hari ketika radiasi matahari menyinari permukaan bumi.
Suhu dapat menyebabkan polutan dalam atmosfir yang lebih rendah dan tidak menyebar. Peningkatan suhu dapat menjadi ketalisator atau membantu mempercepat reaksi kimia perubahan suatu polutan udara. Pada musim kemarau dimana keadaan udara lebih kering dengan suhu cenderung meningkat serta angin yang bertiup lambat dibanding dengan keadaan hujan maka polutan udara pada keadaan musim kemarau cenderung tinggi karena tidak terjadi pengenceran polutan di udara.
Suhu yang menurun pada permukaan bumi dapat menyebabkab peningkatan kelembaban udara relatif sehingga akan meningkatkan efek korosif bahan pencemar. Sedangkan pada suhu yang meningkat akan meningkatkan pula reaksi suatu bahan kimia. Inversi suhu dapat mengakibatkan polusi yang serius karena inversi dapat menyebabkan polutan terkumpul di dalam atmosfer yang lebih rendah dan tidak menyebar. Selain hal itu suhu udara yang tinggi akan menyebabkan udara makin renggang sehingga konsentrasi pencemar menjadi makin rendah dan sebaliknya pada suhu yang dingin keadaan udara makin padat sehingga konsentrasi pencemar di udara makin tinggi. Suhu udara yang tinggi akan menyebabkan bahan pencemar dalam udara berbentuk partikel menjadi kering dan ringan sehingga bertahan lebih lama di udara, terutama pada musim kemarau dimana hujan jarang turun.
Selain itu pula pergerakkan udara di atmosfer dapat terjadi secara vertikal maupun horizontal. gerakan horizontal disebabkan oleh aliran angin, jika angin yang terjadi bersifat aktif dan kekuatannya cukup, polutan tidak mempunyai waktu cukup untuk mengumpul karena cepat disebarkan. atmosfer di sekeliling gunung, bukit dan bangunan-bangunan daerah perkotaan akan memperlambat dan mencegah gerakan angin sehingga mengurangi gerakan udara horizontal karena gerakan horizontal terbatas dipersi polutan menjadi tergantung pada pergerakan udara vertikal. Radiasi sinar matahari dapat mempengaruhi kondisi bahan pencemar oksidan terutama O3 di atmosfer. Keadaan tersebut dapat menyebabkan meningkatnya rangsangan bahan pencemar untuk merusak bahan.
Dengan demikian gambaran klimatologi tertentu, yang bersifat dan berkarakteristik khusus pada suatu tempat, akan mempengaruhi fluktuasi dan variasi temporal konsentrasi pencemaran udara di suatu tempat tersebut dan pola klimatologi akan sesuai dengan karakteristik dan intensitas emisi pencemaran udara yang berasal dari tempat lainnya. Dengan demikian tinjauan klimatologi pencemaran udara akan berskala temporal dan spasial makro.

Sumber :
Achmadi, Pengukuran Dampak Kesehatan (Penyakit) Akibat Perubahan Lingkungan, 1993.
Mukono, Pencemaran Udara dan Pengaruhnya Terhadap Gangguan Saluran Pernafasan, 1997
Fardiaz, Polusi Air dan Udara, 1992
Soedomo, Pencemaran Udara, 2000

Sabtu, 28 Mei 2011

PENCEMARAN UDARA

Udara dimana di dalamnya terkandung sejumlah oksigen, merupakan komponen esensial bagi kehidupan, baik manusia maupun makhluk hidup lainnya. Udara merupakan campuran dari gas, yang terdiri dari sekitar 78 % Nitrogen, 20 % Oksigen; 0,93 % Argon; 0,03 % Karbon Dioksida (CO2) dan sisanya terdiri dari Neon (Ne), Helium (He), Metan (CH4) dan Hidrogen (H2). Udara dikatakan "Normal" dan dapat mendukung kehidupan manusia apabila komposisinya seperti tersebut diatas. Sedangkan apabila terjadi penambahan gas-gas lain yang menimbulkan gangguan serta perubahan komposisi tersebut, maka dikatakan udara sudah tercemar/terpolusi.

Akibat aktifitas perubahan manusia udara seringkali menurun kualitasnya. Perubahan kualitas ini dapat berupa perubahan sifat-sifat fisis maupun sifat-sifat kimiawi. Perubahan kimiawi, dapat berupa pengurangan maupun penambahan salah satu komponen kimia yang terkandung dalam udara, yang lazim dikenal sebagai pencemaran udara. Kualitas udara yang dipergunakan untuk kehidupan tergantung dari lingkungannya. Kemungkinan disuatu tempat dijumpai debu yang bertebaran dimana-mana dan berbahaya bagi kesehatan. Demikian juga suatu kota yang terpolusi oleh asap kendaraan bermotor atau angkutan yang dapat menimbulkan gangguan kesehatan.


PENCEMARAN UDARA

Pencemaran Udara adalah kondisi udara yang tercemar de-ngan adanya bahan, zat-zat asing atau komponen lain di udara yang menyebabkan berubahnya tatanan udara oleh kegiatan manusia atau oleh proses alam, sehingga kualitas udara menjadi kurang atau tidak dapat berfungsi lagi sesuai dengan peruntukkannya. Pencemaran udara mempengaruhi sistem kehidupan makhluk hidup seperti gangguan kesehatan, ekosistem yang berkaitan dengan manusia

Jenis-jenis pencemaran udara

Menurut bentuk : Gas, Pertikel

Menurut tempat : Ruangan (indoor), udara bebas (outdoor)

Gangguan kesehatan : Iritansia, asfiksia, anetesia, toksis

Menurut asal : Primer, sekunder

Bahan atau Zat pencemaran udara dapat berbentuk gas dan partikel :

Pencemaran udara berbentuk gas dapat dibedakan menjadi :

Golongan belerang terdiri dari Sulfur Dioksida (SO2), Hidrogen Sulfida (H2S) dan Sulfat Aerosol.

Golongan Nitrogen terdiri dari Nitrogen Oksida (N2O), Nitrogen Monoksida (NO), Amoniak (NH3) dan Nitrogen Dioksida (NO2).

Golongan Karbon terdiri dari Karbon Dioksida (CO2), Karbon Monoksida (CO), Hidrokarbon .

Golongan gas yang berbahaya terdiri dari Benzen, Vinyl Klorida, air raksa uap.

Pencemaran udara berbentuk partikel dibedakan menjadi :

Mineral (anorganik) dapat berupa racun seperti air raksa dan timah.

Bahan organik terdiri dari ikatan hidrokarbon, klorinasi alkan, Benzen.

Makhluk hidup terdiri dari bakteri, virus, telur cacing.

Pencemaran udara menurut tempat dan sumbernya dibedakan menjadi dua :


Pencemaran udara bebas (Out door air pollution), Sumber Pen-cemaran udara bebas :

Alamiah, berasal dari letusan gunung berapi, pembusukan, dll.

Kegiatan manusia, misalnya berasal dari kegiatan industri, rumah tangga, asap kendaraan, dll.

Pencemaran udara ruangan (In door air pollution), berupa pencemaran udara didalam ru-a-ngan yang berasal dari pemukiman, perkantoran ataupun gedung tinggi.

Pencemaran udara berdasarkan pengaruhnya terhadap gangguan kesehatan dibedakan menjadi 3 jenis :

Irintasia. Biasanya polutan ini bersifat korosif. Merangsang proses peradangan hanya pada saluran pernapasan bagian atas, yaitu saluran pernapasan mulai

dari hidung hingga tenggorokkan. Misalnya Sulfur Dioksida, Sulfur Trioksida, Amoniak, debu. Iritasi terjadi pada saluran pernapasan bagian atas dan juga dapat mengenai paru-paru sendiri.

Asfiksia. Disebabkan oleh ber-kurangnya kemampuan tubuh dalam menangkap oksigen atau mengakibatkan kadar O2 menjadi berkurang. Keracunan gas Karbon Monoksida mengakibatkan CO akan mengikat hemoglobin sehingga kemampuan hemoglobin mengikat O2 berkurang terjadilah Asfiksia. Yang termasuk golongan ini adalah gas Nitrogen, Oksida, Metan, Gas Hidrogen dan Helium.

Anestesia. Bersifat menekan susunan syaraf pusat sehingga kehilangan kesadaran, misalnya aeter, aetilene, propane dan alkohol alifatis.

Toksis. Titik tangkap terjadinya berbagai jenis, yaitu :

Menimbulkan gangguan pada sistem pembuatan darah, mi-salnya benzene, fenol, toluen dan xylene.

Keracunan terhadap susunan syaraf, misalnya karbon disulfid, metil alkohol.

Pencemaran udara dapat pula dikelompokkan kedalam :

Pencemar primer. Polutan yang bentuk dan komposisinya sama dengan ketika dipancarkan, lazim disebut sebagai pencemar primer, antara lain CO, CO2, hidrokarbon, SO, Nitrogen Oksida, Ozon serta berbagai partikel.

Pencemar Sekunder. Berbagai bahan pencemar kadangkala bereaksi satu sama lain menghasilkan jenis pencemar baru, yang justru lebih membahayakan kehidupan. Reaksi ini dapat terjadi secara otomatis ataupun dengan cara bantuan katalisator, seperti sinar matahari. Pencemar hasil reaksi disebut sebagai pencemar sekunder. Contoh pencemar sekunder adalah Ozon, formal dehida, dan Peroxy Acyl Nitrate (PAN).

Sumber ; Indah Kastiyowati, ST. Staf Puslitbang Tek Balitbang Dephan.

Sabtu, 21 Mei 2011

Manajemen Lingkungan

Banyak pendekatan yang dibuat untuk mengelola lingkungan baik di tingkat perusahaan maupun pemerintah, diantaranya adalah Environmental Management System (EMS). EMS adalah siklus berkelanjutan dari kegiatan perencanaan, implementasi, evaluasi dan peningkatan proses, yang diorganisasi sedemikian sehingga tujuan bisnis perusahaan/pemerintah dan tujuan lingkungan padu dan bersinergi.
• Perencanaan, meliputi identifikasi aspek lingkungan dan penetapan tujuan (goal)
• Implementasi, termasuk pelatihan dan pengendalian operasi;
• Pemeriksaan, termasuk monitoring dan pemeriksaan hasil kerja;
• Evaluasi, termasuk evaluasi kemajuan kerja dan perbaikan sistem.
Penerapan EMS

EMS yang efektif, dibangun pada konsep TQM (Total Quality Management), misalnya pada ISO 9000. Untuk meningkatkan pengelolaan lingkungan, organisasi tidak hanya tahu apa yang terjadi, tetapi juga harus tahu mengapa terjadi. Kebanyakan penerapan EMS (termasuk didalamnya ISO 14001), akan sukses jika :
• didukung oleh manajemen puncak
• fokus pada peningkatan berkelanjutan
• sederhana, fleksibel dan dinamis mengikuti perubahan lingkungan
• cocok dengan budaya organisasi
• kepedulian dan keterlibatan semua pihak
Manfaat EMS

Walaupun penerapan EMS memerlukan biaya dan waktu, namun manfaat yang bisa dipetik diantaranya :
• meningkatkan kinerja lingkungan
• mengurangi/menghilangkan keluhan masyarakat terhadap dampak lingkungan
• mencegah polusi dan melindungi sumber daya alam
• mengurangi resiko
• menarik pelanggan dan pasar baru (yang mensyaratkan EMS)
• menaikkan efisiensi/mengurangi biaya
• meningkatkan moral karyawan
• meningkatkan kesan baik di masyarakat, pemerintah dan investor
• meningkatkan tanggung jawab dan kepedulian karyawan terhadap lingkungan
ISO 14000

ISO (International Organization for Standardization), merupakan organisasi non pemerintah, yang berlokasi di Geneva, Switzerland. ISO memperkenalkan dan mengembangkan standar internasional, seperti seri ISO 9000 dan ISO 14000. ISO 9000 mengenai pengelolaan kualitas (quality management), sedangkan ISO 14000 mengenai pengelolaan lingkungan (environmental management). Aktivitas yang menggunakan standar ISO 14000 menghendaki aktivitas pengurangan dampak merugikan terhadap lingkungan dan peningkatan menerus terhadap kinerja lingkungan.

AMDAL

AMDAL atau Analisis Mengenai Dampak Lingkungan (Environmental Impact Assessment) merupakan perangkat analisis untuk menilai suatu kegiatan (proposal kegiatan) tidak berdampak merugikan lingkungan, seperti pada kesehatan, flora, fauna, tata guna lahan, ekonomi, budaya dan sosial.

Amdal juga merupakan sebuah proses perencanaan yang digunakan untuk menghitung, memprediksi dan menganalisis dampak nyata dari sebuah proposal (rencana pembangungan) terhadap lingkungan serta untuk menyediakan informasi yang bisa digunakan dalam proses pengambilan keputusan apakah proposal tersebut akan disetujui atau tidak.

Proses AMDAL terdiri dari penyaringan, scoping, pengkajian, mitigasi , pelaporan, peninjauan, pengambilan keputusan , pengawasan dan manajemen dan partisipasi publik.

Pemodelan Lingkungan

Model bisa diartikan sebagai penggambaran sesuatu sehingga kita menjadi lebih jelas memahaminya, misalnya pembuatan maket gedung 3 dimensi.
Dengan melihat model maket, kita menjadi lebih mudah untuk memahami bentuk keseluruhan gedung (didalam model bentuk keseluruhan disebut sistem), komponen-komponen pembentuk sistem (misalnya pintu, jendela), susunan komponen, dan hubungan antar komponen. Model juga berarti penyederhanaan, karena tidak semua komponen penyusun sistem mampu tergambarkan oleh model.
Di dalam model ada istilah simulasi, validasi, error (kesalahan). Simulasi adalah mencoba-coba berbagai alternatif, untuk melihat perubahan dan hasil yang terbentuk. Misalnya kita tidak menyukai letak pintu di depan, maka kita bisa mencobanya di samping kiri, disamping kanan, dan seterusnya. Bisa dibayangkan jika coba-coba tersebut dilakukan pada bangunan sesungguhnya (bukan model), betapa repot dan mahalnya coba-coba itu.
Bagaimanapun model adalah tiruan. Kita ingin menyerupai yang asli. Maka kita bandingkan model dengan yang sesungguhnya (benda asli). Kegiatan membandingkan model dengan yang asli dikenal dengan validasi. Besarnya perbedaan tersebut disebut dengan error (kesalahan). Kegiatan validasi bertujuan agar error (kesalahan) sekecil mungkin.
Model dapat digambarkan dengan diagram dua dimensi, misalnya diagram rantai makanan atau siklus air, miniatur tiga dimensi, misalnya maket, ataupun model matematika, misalnya persamaan reaksi kimia.
Model matematika adalah model yang digambarkan dalam persamaan matematika. Persamaan ini merupakan pendekatan terhadap suatu fenomena fisik. Pembuktian kebenaran hubungan suatu fenomena fisik dengan sebuah persamaan matematik, dapat dilakukan dengan riset laboratorium. Nanti dicari hubungan antara hasil laboratorium dengan hasil perhitungan matematika. Jika hasilnya sangat memuaskan, maka dihasilkanlah persamaan empiris. Pembuktian empiris banyak menggunakan cabang ilmu statistik.
Dengan kemajuan komputer, model matematika ini dapat diubah ke dalam bahasa program komputer. Dengan komputer, proses simulasi menjadi lebih mudah dan cepat.
Model Lingkungan
Model lingkungan pada dasarnya menggambarkan suatu sistem/fenomena lingkungan kedalam bentuk yang lebih sederhana. Berdasarkan acuan waktu model lingkungan dapat digolongkan menjadi model statik dan dinamik:
Model Statik, yaitu model yang mengabaikan pengaruh waktu. Biasanya model ini menggambarkan sistem dalam bentuk persamaan matematika. Untuk memperoleh hasil, perhitungan dilakukan cukup satu kali saja dan variabel yang digunakan dalam persamaan merupakan nilai rata-rata.
Model dinamik menempatkan waktu sebagai variabel bebas, sehingga model jenis ini menggambarkan dinamika suatu sistem sebagai fungsi dari waktu. Untuk memperoleh hasil, perhitungan dilakukan secara berulang-ulang (iterasi) sampai tercapai nilai kesalahan (error) yang minimal.
Proses Pemodelan
Tahap-tahap yang umum digunakan dalam pengembangan suatu model adalah :
1. Definisi masalah, dalam tahap ini masalah yang sulit didefinisikan dan diurai menjadi unsur-unsur pembentuk masalah. Didefinisikan juga sistem dan faktor eksternal (di luar sistem). Dicari komponen masalah yang paling penting dan signifikan dalam pemecahan masalah. Dicari pula komponen masalah yang bisa dijadikan titik acuan awal pemecahan masalah.
2. Strukturisasi model konseptual, pada tahap ini diuraikan hubungan antara komponen penyusun masalah, sistem dan tujuan studi.
3. Formulasi model, yaitu proses merumuskan perilaku model, dan hubungan antar variabel. Interaksi antar variabel yang kompleks sering disederhanakan dengan menggunakan asumsi yang tepat.
4. Kalibrasi model yaitu menyesuaikan parameter-parameter dalam model sesuai dengan kondisi nyata di lapangan.
5. Validasi model yaitu tahap pengujian keakuratan model dengan membandingkan perilaku model dan perilaku sistem nyata.
6. Uji Sensitifitas yaitu tahap pengujian perilaku model dengan mengubah-ubah nilai variabel model.
7. Analisis dan solusi model. Model akan menghasilkan alternatif solusi sesuai dengan skenario yang kita buat. Hasil model yang dirasa kurang tepat, perlu dijalankan ulang (biasanya menggunakan komputer), sampai tercapai solusi yang memuaskan. Proses ini dikenal dengan simulasi model.
Implementasi model. Agar model dapat diterapkan dengan baik, maka pihak perancang model dan pengguna model (misalnya para pengambil keputusan) perlu bekerja sama sejak awal. Perancang model akan membuat model sedinamis dan semudah mungkin operasionalnya (user friendly), dan pengguna model akan memberi masukan-masukan sesuia dengan kebutuhan pengguna.







Ekspedisi Mentawai

Ekspedisi Mentawai
Reef Check

Mengenai Saya

Pekanbaru, Riau, Indonesia